Viruses Contained in Droplets Applied on Warmed Surface Are Rapidly Inactivated
نویسندگان
چکیده
Heat inactivation of viruses was reported, however, the thermal resistance of viruses in droplets has not been studied. The aim of this study was to evaluate the pattern of heat resistance of minute virus of mice (MVM), coxsackievirus B4 (CVB4), influenza A virus (H1N1), and herpes simplex virus type 1 (HSV1) contained in droplets. Four μL droplets containing viruses (> 10(4.5) TCID50) were applied onto warmed surface obtained by using a self-made heating device. Viral suspensions were exposed to temperatures ranging from 70 to 130°C for 0 to 90 min depending on the virus, and then the recovered viral preparations were tittered. Inactivation rates were calculated from curves that were analysed according to the first order kinetics model. Full inactivation was obtained for MVM in 90 min at 80°C and in 2 s at 130°C, for H1N1 in 14 s at 70°C and in 1 s at 110°C, for CVB4 and HSV-1 in 5 s and 7 s respectively at 70°C and in 1 s at 100°C. Clearly, MVM was more resistant than H1N1 that was more resistant than HSV-1 and CVB4, which was reflected by increasing inactivation rates. The impact of short time exposure to heat onto the infectivity of viruses contained in a small volume of suspension has been determined. For the first time, the inactivation of viral particles contained in drops exposed to temperatures higher than 100°C has been investigated. It appears that heating can have an unexpected faster virucidal effect than previously described.
منابع مشابه
Training Manual for Prevention of Covid-19 Disease among Hospital Personnel
Dear Editor In recent days, coronavirus disease (COVID-19) as a viral infection caused by the SARS-Cov-2 virus has become a pandemic disease and has created critical conditions worldwide [1]. According to previous studies on pathogenic viruses associated with acute respiratory distress syndrome, each virus has a specific virulence dose, which it is about 2×103-3×103 viral particles for the inf...
متن کاملEffect of ozone on the inactivation of indoor airborne viruses with the COVID-19 virus approach: a systematic review
Background: Nowadays, the COVID-19 pandemic has become a global problem that new methods must be used to prevent it. The virus is highly contagious and is mainly transmitted through the air. Ozone is a powerful oxidant that can be used to inactivate a wide range of viruses that may be resistant to other disinfectants. The purpose of this study was to review the use and effect of ozone in inacti...
متن کاملOzone inactivation of cell-associated viruses.
The inactivation of HEp-2 cell-associated poliovirus (Sabin 1) and coxsackievirus A9 was investigated in three experimental systems, using ozone as a disinfectant. The cell-associated viral samples were adjusted to a turbidity of 5 nephelometric turbidity units. The cell-associated poliovirus and coxsackievirus samples demonstrated survival in a continuous-flow ozonation system at applied ozone...
متن کاملDevelopment of a test system to evaluate procedures for decontamination of respirators containing viral droplets.
The aim of this study was to develop a test system to evaluate the effectiveness of procedures for decontamination of respirators contaminated with viral droplets. MS2 coliphage was used as a surrogate for pathogenic viruses. A viral droplet test system was constructed, and the size distribution of viral droplets loaded directly onto respirators was characterized using an aerodynamic particle s...
متن کاملSurface Inactivation of Bacterial Viruses and of Proteins
1. The seven bacterial viruses of the T group active against E. coli, are rapidly inactivated at gas-liquid interfaces. 2. The kinetics of this inactivation whether brought about by shaking or by bubbling with nitrogen are those of a first order reaction. 3. This inactivation may be prevented by the addition of enough protein to maintain the gas-liquid interface in a saturated condition. 4. The...
متن کامل